

Soldados utilizando o DSET em um exercício de simulação viva. Sensores acoplados ao armamento e ao equipamento permitem simular os disparos e o acerto do impacto em tempo real. (Foto: Cabo Matheus Francelino, 36º Batalhão de Infantaria Mecanizado, Exército Brasileiro)

As Inovações Tecnológicas de Simulação Aplicada no Processo Ensino-Aprendizagem A experiência do Exército Brasileiro

Maj Rodolfo Leonardo Borges Carneiro Amorim, Exército Brasileiro Ten Cel Anderson Wallace de Paiva dos Santos, Exército Brasileiro

MILITARY REVIEW Janeiro 2022

s tecnologias digitais mudaram a realidade social, alcançando papéis fundamentais no mundo contemporâneo. Inovações na área de tecnologia da informação (TI) possibilitaram o desenvolvimento de simuladores, dando uma nova dimensão ao adestramento das forças armadas, o que torna importante adequar as práticas de ensino às novas tecnologias.¹

O adestramento é uma ferramenta primordial para a manutenção dos níveis de prontidão da tropa. Contudo, pressões políticas sobre os gastos militares e o incremento do número de operações reais têm reduzido o tempo gasto com treinamento. Ainda, as restrições sobre os campos de instrução, seja pela proximidade dos centros urbanos ou por questões ambientais, impõem que os exercícios ocorram em áreas distantes.²

Diante disso, cresce a demanda pelo uso de simuladores de combate, que consiste no processo de imitação e análise de problemas do mundo real³, aplicado para a solução de problemas militares, utilizado como ferramenta de apoio à decisão em jogos de guerra e para aquisição de sistemas de armas.⁴

Recentemente, o Exército Brasileiro ampliou o uso de simuladores, para racionalizar recursos, sem perder capacidade de resposta. Modernos equipamentos foram adquiridos para aliar eficiência operacional e redução de custos.⁵ Novas tecnologias cooperam para o aprimoramento profissional do efetivo do Exército, contribuindo para a transformação da Força Terrestre e projetando-a para o futuro.

Este trabalho abordará o emprego das inovações tecnológicas de simulação no processo ensino-aprendizagem, pautado no estudo de caso da experiência do Exército Brasileiro e na discussão dos fatores que levaram à obtenção de tais inovações para a instrução militar, relacionando-as com as contribuições para a manutenção dos níveis de adestramento, com custo reduzido.

A simulação no processo ensino-aprendizagem

Os exercícios de simulação são habitualmente usados para analisar diferentes fenômenos, sem que estes precisem ocorrer,⁶ e podem significar a representação simplificada de fenômenos ou processos complexos para experiência ou treinamento⁷ como, por exemplo, os dedicados aos sistemas de armas e aeronaves. No ensino militar, simulação é definida como o método de representar um evento real, por meio de um modelo, com o uso de meios mecânicos e informatizados, que permite reproduzir as características e evoluções de um fenômeno ao longo do tempo.⁸ No estudo da medicina, a simulação é empregada como técnica de ensino aplicada para a reprodução de tarefas práticas que envolvam habilidades manuais ou de decisão.⁹

Atualmente, observa-se o uso cada vez mais frequente de simuladores em diferentes setores da sociedade. As inovações tecnológicas possibilitam simulações cada vez mais detalhadas, sendo possível prever o comportamento de complexos sistemas, materiais e fenômenos naturais, 10 permitindo testar projetos e explorar suas possibilidades e restrições, concorrendo para a seleção da opção mais adequada para a consecução de um empreendimento e evitando comprometer recursos com aquisições erradas. Ainda, permite comprimir e expandir o tempo, acelerando ou desacelerando um fenômeno para melhor investigá-lo, possibilitando entender sua natureza e, então, encontrar soluções para um determinado problema. A simulação também é proveitosa para o treinamento dos recursos humanos, pois propicia o aprendizado por ensaio e erro, sendo menos dispendiosa e garantindo a segurança física.

Por outro lado, a operação de simuladores e a construção de modelos requerem especial treinamento dos operadores, o que pode ser demorado e caro.¹¹

Contudo, a competição na indústria de TI produziu avanços tecnológicos que se traduzem em soluções continuamente melhores. A medida que o computador se torna mais poderoso, mais preciso, mais rápido e mais fácil de usar, o software também melhora, mitigando possíveis desvantagens para a simulação.

Assim, empresários, gestores e órgãos públicos estão percebendo os benefícios dos simuladores e incorporando-os cada vez mais às operações diárias. Para a maioria das instituições, os benefícios vão além do simples fato de estarem atualizadas, pois a confiança nos resultados fortalece sua credibilidade e processo decisório.

De fato, a simulação no processo ensino-aprendizagem passa a ser uma necessidade, pois essa ferramenta possibilita a experimentação e a solução de problemas, ao passo que também estimula a aprendizagem. Esse incentivo pode ser explicado considerando-se que as gerações atuais vivem em um ambiente repleto de tecnologia. Elas passam muito tempo on-line e têm, à mão, sofisticados dispositivos. Assim, é mais adequado inserir na prática de ensino as novas tecnologias com as quais as atuais gerações estão familiarizadas, tornando o processo de aprendizagem mais atrativo. 13

Por esses motivos, é necessária a revisão dos modelos tradicionais de ensino, de forma a incluir novas práticas pedagógicas que possibilitem maior integração entre teoria e prática. ¹⁴ Apesar da dificuldade de alguns professores em acompanhar essa evolução, as modernas tecnologias têm muito a oferecer, o que, sem dúvida, tornará seus trabalhos mais rápidos e fáceis. ¹⁵

Para tanto, nos últimos anos, surgiram diferentes softwares de simulação para o ensino de física, matemática e outras ciências. Essas ferramentas têm possibilitado recriar experiências que em sala de aula não seriam possíveis.¹⁶

Entende-se, então, que, para melhor interação de alunos e professores no processo ensino-aprendizagem na Era da Informação, é importante que a capacitação pedagógica e tecnológica dos educadores seja continuamente desenvolvida. Isso permitirá ao indivíduo não apenas acompanhar as mudanças, mas, sobretudo, inovar.¹⁷

Do exposto, infere-se que o uso de modernas ferramentas de simulação favorece alcançar resultados imediatos de aprendizagem, na medida em que o aluno consegue simular fenômenos e debater os resultados obtidos. Da mesma forma, o contato com essas tecnologias estimula no futuro profissional o espírito da inovação, competência altamente exigida contemporaneamente.

A simulação empregada na instrução militar

A simulação de combate tem por finalidade preparar o militar para atuar em um ambiente operacional real. Na instrução militar, a simulação representa uma excelente forma de adestramento para as tropas.

No Brasil, na década de 1920, há relatos da realização de manobras na região Sul do país, enfatizando a simulação de uma contraofensiva ante invasores estrangeiros. Assim, a simulação de combate é inicialmente definida como a reprodução de uma situação de conflito, ou seja, é o processo de treinamento que imita sistemas de armas e seu adequado comando e controle, incluindo, nessa definição, a reprodução da operação de sistemas e materiais bélicos de uso complexo.

Dessa forma, graças às inovações tecnológicas na computação e informática, a simulação de combate é empregada com elevado grau de realismo em diversas áreas militares. É aplicada no treinamento de tiro, pilotagem, sistemas complexos de armas, logística, adestramento tático de pequenas frações, operações de grandes unidades, sistemas de comando e controle, comando e estado-maior, dentre outros. 19

A simulação para aplicações militares é conduzida em três modalidades: viva, virtual e construtiva. Nos três casos, haverá a interação de pessoas reais em uma experiência simulada, controlada por regras e procedimentos pré-determinados.

A modalidade de simulação viva é o treinamento militar, envolvendo pessoas reais que operam materiais também reais, em um terreno que se assemelhe a um Teatro de Operações. Os armamentos, viaturas e aeronaves são equipados com sensores e dispositivos que possibilitem acompanhar o treinamento e os engajamentos.

Como exemplo de equipamento de simulação viva, destaca-se o Dispositivo de Simulação de Engajamento Tático (DSET), utilizado pelo Exército Brasileiro, que possibilita o sensoriamento do disparo simulado por armamentos individuais e coletivos. Esse equipamento proporciona grande realismo, pois, por meio de feixes de laser, simula a balística da munição e o acerto do impacto em tempo real.²⁰

Já na simulação virtual, pessoas reais operam sistemas gerados por computador.²¹ São recriados armamen-

tos, viaturas, aeronaves,

Borges Carneiro Amorim, do Exército Brasileiro, é mestrando do Instituto de Meira Mattos/Escola de Comando e Estado-Maior. Formou-se em 2003 na Academia Militar das Agulhas Negras, Arma de Infantaria. Tem pós-graduação em Direito Militar pela Faculdade de Direito de Santa Maria. Concluiu os cursos de Instrutor de Educação

Física (EsEFEx, 2007) e

(ECEME, 2018-2019).

Comando e Estado-Maior

O Maj Rodolfo Leonardo

O Ten Cel Anderson Wallace de Paiva dos Santos, do Exército Brasileiro, é mestrando do Instituto de Meira Mattos/ Escola de Comando e Estado-Maior. Formou-se em 1999 na Academia Militar das Agulhas Negras, Arma de Artilharia. Concluiu os cursos de Defesa Química, Biológica, Radiológica e Nuclear (EB, 2003), NATO CBRN Defense Course (Portuguese Army, 2013) e Comando e Estado-Maior (ECEME, 2018-2019).

observação, entre outros recursos e materiais, cuja operação exija alto grau de adestramento e risco ou custo elevado de operação.

Dada a complexidade do sistema a ser simulado, é na modalidade virtual onde se empregam os meios de simulação com maior tecnologia embarcada. Sua principal aplicação é o desenvolvimento da destreza individual e coletiva no emprego de determinado material de uso militar.

Existem simuladores virtuais de procedimentos de torre e cabine para adestramento da guarnição dos carros de combate, bem como simuladores de helicóptero para treinamento da tripulação. Merece destaque o fato de que ambos os simuladores permitem o adestramento a baixo custo, sem consumo de munição e combustível e sem o desgaste e dispêndio com a manutenção do material bélico. Por exemplo, o custo do uso do simulador de helicópteros equivale a um terço do valor das horas de voo em aeronave real.²²

Ainda como exemplo de simuladores virtuais, o Exército Brasileiro dispõe do Simulador de Tiro de Armas Leves (STAL) e do Simulador de Apoio de Fogo para Artilharia (SIMAF), para tiro de armamentos e sistemas de armas.

Embora o emprego desses simuladores não substitua o tiro real, são alternativas às restrições ambientais, demográficas e orçamentárias para utilização de campos de tiro e munição.

Em terceiro lugar, a modalidade de simulação construtiva emprega pessoas reais, controlando tropas e elementos simulados. Mais conhecida como "Jogo de Guerra", pode ser desenvolvida utilizando tabuleiros, cartas topográficas e softwares de simulação. É aplicada no treinamento de comandantes e seus estados-maiores na solução de problemas militares.

Na simulação construtiva, os indivíduos interagem constituindo frações amigas e inimigas, que se enfrentam sob o controle da direção do exercício. Quando executado com apoio de software, a existência de inteligência artificial não permite aos operadores influenciarem diretamente na consequência das decisões tomadas. Os resultados dos enfrentamentos estão diretamente relacionados aos atributos e à doutrina militar inseridos no programa.

Os programas AZUVER e COMBATER são utilizados para simulação construtiva no Exército Brasileiro, nos níveis batalhão, brigada e divisão de exército. Semelhantemente, nos Estados Unidos da América (EUA), utilizam-se os programas JSIMS (Joint Simulation System) e JWARS (Joint Warfare System) para simulação de operações conjuntas.²³ Em ambos os casos, essas ferramentas colaboram para estimular a capacidade de decisão dos comandantes e estados-maiores.

A experimentação do uso de simuladores na instrução militar produz benefícios devido aos baixos riscos e baixos custos de execução.²⁴ Ainda, a flexibilidade de criação de cenários facilita o desenvolvimento do pensamento criativo, por meio da execução de missões inéditas. No entanto, a impossibilidade de reproduzir atributos intangíveis como moral, camaradagem, medo e fadiga, é uma limitação comumente criticada nos simuladores.

Do exposto, observa-se que os avanços tecnológicos permitiram o desenvolvimento de sofisticados dispositivos de simulação. Assim, conclui-se que esses meios colaboram com o adestramento nas forças armadas ao possibilitarem emular inúmeras situações de combate, materiais e sistemas complexos de armas.

O sistema de simulação do Exército Brasileiro

Na atualidade, em que a sociedade se encontra imersa em tecnologia, não se concebe uma simulação de combate sem o emprego de equipamentos, meios de informática e infraestrutura necessária para suporte aos exercícios de adestramento militar.

No Exército Brasileiro, o Programa de Instrução Militar do Comando de Operações Terrestre (PIM COTER)²⁵ prevê a realização de exercícios de simulação desenvolvidos a partir de software, como excelente ferramenta no adestramento de frações.²⁶

Portanto, foi criado o Sistema de Simulação do Exército Brasileiro (SSEB), cuja finalidade é definir a obtenção, o emprego e o gerenciamento de simuladores para treinamento militar no âmbito da Força.²⁷

O SSEB é constituído por um conjunto de recursos humanos, instalações e equipamentos de simulação que mobiliam as principais escolas militares, centros de instrução e organizações militares. A implantação desse sistema, aplicado à instrução e ao ensino militar, coopera para a transformação da Força Terrestre, projetando-a para a Era do Conhecimento.

O Centro de Adestramento-Leste (CA-Leste) e o Centro de Adestramento-Sul (CA-Sul), respectivamente instalados nas cidades do Rio de Janeiro-RJ e de Santa Maria-RS, são, atualmente, organizações

Posto de Observação do simulador virtual de apoio de fogo para artilharia de campanha, instalado em Resende-RJ, na Academia Militar das Agulhas Negras. (Foto: SIMAF-AMAN)

militares que conduzem o adestramento da Força Terrestre nas três modalidades de simulação. O CA-Leste realiza a preparação de tropas, prioritariamente de infantaria, para a atuação dentro do território nacional e para missões internacionais, no contexto de operações de paz. O CA-Sul tem como missão contribuir para a capacitação de tropas, preferencialmente, blindadas e mecanizadas.

Ambos os centros primam pela imitação do combate, com ênfase na utilização de meios de simulação. Para tanto, contam com o DSET, para simulação viva; o software Virtual Battlespace 3 (VBS-3), para simulação virtual; e o Jogo de Guerra COMBATER, para simulação construtiva.

O CA-Sul apoia o Centro de Instrução de Blindados nas atividades de simulação, adestrando tropas blindadas e mecanizadas na operação dos simuladores de torres de tiro e cabines de motoristas, possibilitando a interação do combatente com o material nas fases iniciais do treinamento.²⁸ Também coopera com o SSEB, o Centro de Instrução de Aviação do Exército, em Taubaté-SP, onde está instalado o Simulador de Helicóptero Esquilo/Fennec, certificado pela Agência Nacional de Aviação Civil, para o adestramento da tripulação de aeronaves. Para o Maj Rodrigo de Souza Mendes, que é instrutor de voo, o equipamento possibilita vivenciar situações de estresse, condições meteorológicas diversas, emergências, processos de tomada de decisão e outras experiências sem que haja o risco inerente à pilotagem de aeronaves.²⁹

O Centro Tecnológico do Exército, sediado no Rio de Janeiro, é o órgão responsável pela pesquisa e desenvolvimento de material bélico para a Força Terrestre. Acompanhando a evolução tecnológica dos meios de simulação para adestramento, criou, em 2010, o Grupo Especial de Simuladores, responsável pelo desenvolvimento do STAL.³⁰

O STAL é um recurso de tecnologia 100% nacional. Seu sistema possibilita o treinamento de tiro virtual em um cenário simulado, por um ou mais atiradores

Tabela. Custo/benefício da Simulação Militar

Simulação Militar	
Vantagens	Desvantagens
Economia de recursos financeiros em relação aos adestramentos reais	– Alto custo e tempo prolongado para a formação de operadores para os simuladores
Possibilidade de explorar os requisitos, capacidades e limitações de materiais bélicos antes da aquisição	
Não interferência na rotina da população do entorno dos campos de instrução	
Exploração de situações específicas do combate, por meio do gerenciamento do tempo, podendo atrasá-lo ou adiantá-lo	
Economia de tempo com grandes deslocamentos	Obsolescência dos sistemas, em razão do acelerado desenvolvimento científico-tecnológico atual
Preservação do meio ambiente	
Minimização das restrições quanto à disponibilidade de campos de instrução	
Reprodução das condições reais de emprego dos sistemas de armas	
Possibilidade de ensaio e erro contínuo, até a obtenção de um nível de adestramento satisfatório	
Redução do risco nas atividades militares	Limitação para reproduzir atributos intangíveis como moral, camaradagem, medo e fadiga
Baixo custo a partir do curto prazo, gerando economia de munição e combustível, além de redução do desgaste do material e seus custos com manutenção	
Criação de cenários inéditos, que permitem explorar o pensamento criativo	
Emulação de inúmeras situações de combate, materiais de emprego militar e sistemas complexos de armas	
Aplicação dual	

(Fonte: autores)

simultaneamente. Por ser um equipamento de propriedade nacional, possui valor de aquisição e manutenção abaixo do praticado no mercado, o que favorece seu emprego em larga escala.31

O Centro de Defesa Cibernética também contribui para o SSEB no setor que é considerado estratégico para a defesa nacional. Nesse centro, foi desenvolvido o Simulador de Operações de Guerra Cibernética (SIMOC), que permite imitar cenários de ataques cibernéticos, bem como ambientes de catástrofes e de comprometimento de infraestruturas críticas, possibilitando o emprego dual do equipamento.32

Ainda, outras parcerias foram firmadas para o desenvolvimento de ferramentas de simulação aplicadas ao ensino e à instrução militar. O simulador virtual de reconhecimento, escolha e ocupação de posição do sistema ASTROS,³³ software desenvolvido no modelo Tríplice Hélice,34 envolve o Exército Brasileiro, como órgão de fomento, e a Universidade Federal de Santa Maria, executiva do ensino e pesquisa dessa inovação.

No mesmo sentido, a Empresa Brasileira de Treinamento e Simulação, originária da Incubadora de Empresas de Base Tecnológica do Exército, desenvolveu simuladores para a condução de viaturas, que vem sendo utilizados amplamente no adestramento da tropa.

causados pela munição de grosso calibre. Somamse, também, as despesas com munição de alto custo, transporte do pessoal e armamento e os gastos logísticos para a realização da atividade durante o período necessário para execução do tiro.

Assim, o uso de novas tecnologias, como simuladores de tiro, é considerado como solução às limitações mencionadas acima. Ainda que a simulação não substitua os exercícios no terreno, ela complementa a instrução em excelentes condições, precedendo a realização do tiro real.

O contrato para a aquisição das duas unidades do SIMAF custou 13,98 milhões de euros, ou cerca de 37,9 milhões de reais, ao câmbio do ano do contrato. Com a adoção do simulador, o Exército contabilizou uma economia anual de aproximadamente 40 milhões de reais em gastos com munição de artilharia, justificando o investimento.³⁶

De acordo com o SIMAF, em 2017, foram rodadas mais de 430 horas de simulação, com 9.300 disparos simulados de artilharia efetuados nos diversos tipos e calibres e cerca de 1.250 militares submetidos às atividades de instrução.³⁷

Por fim, o custo de aquisição de materiais bélicos de alta tecnologia embarcada justifica o emprego de simuladores de treinamento. Contudo, sua obtenção deve

Com a adoção do simulador, o Exército contabilizou uma economia anual de aproximadamente 40 milhões de reais em gastos com munição de artilharia, justificando o investimento.

O SIMAF também integra o SSEB. Com uma unidade instalada em Resende-RJ, na Academia Militar das Agulhas Negras, e outra no CA-Sul, o SIMAF é um sistema computadorizado, composto por armamentos, equipamentos e softwares, capaz de simular os trabalhos para a execução dos tiros de artilharia e morteiro pesado, conforme a doutrina militar terrestre brasileira.³⁵

A execução do tiro real de artilharia é uma atividade complexa e onerosa. Depende de amplos campos de instrução, que atualmente têm seu uso limitado por conta da expansão dos centros urbanos e pelas restrições ambientais impostas aos danos

responder aos fatores condicionantes para a geração de capacidades operacionais militares (DOAMEPI): doutrina, organização, adestramento, material, educação, pessoal e infraestrutura.38 Assim, a simulação deve atender à geração das capacidades requeridas à Força Terrestre, com a utilização dos materiais de emprego militar ou sistemas que serão simulados.

Diante do exposto, infere-se que os principais meios de simulação adquiridos pelo Exército Brasileiro nos últimos anos são importantes ferramentas para a redução de custos e para a manutenção da capacitação de seus recursos humanos.

Conclusão

A simulação de combate é empregada por Forças Armadas de diversos países e apresenta-se como excelente ferramenta ao processo de ensino-aprendizagem. Os avanços tecnológicos permitiram o desenvolvimento de simuladores com elevado grau de realismo, tornando o adestramento mais satisfatório para os militares.

Observa-se que os simuladores do Exército Brasileiro evidenciam o incremento na instrução militar, fomentando a geração de capacidades militares necessárias à transformação da Força Terrestre e possibilitam a interação do combatente com os modernos materiais de emprego militar, principalmente no início do adestramento. Facilitam, assim, o desenvolvimento de experiência, por meio do treinamento continuado, diminuindo os custos e os riscos próprios das atividades militares.

A aquisição de sistemas ou materiais bélicos complexos, com alta tecnologia agregada, demanda o uso de simuladores para adestramento por seus usuários. As inovações tecnológicas na área de simulação têm por objetivo permitir o preparo adequado para que o emprego do poder militar ocorra em melhores condições.

Nesse sentido, o Exército Brasileiro empreende esforços no amplo uso de simuladores para o preparo de seu efetivo, pois entende que "a simulação busca a perfeição no adestramento, a fim de obter eficiência e eficácia no emprego da tropa e de garantir um presente profícuo e um futuro promissor." ³⁹

Diante do exposto, a simulação de combate é um excelente instrumento para a manutenção dos níveis de adestramento. A utilização desse meio pode contribuir para a racionalização de recursos e atender a carência de locais para adestramento e execução do tiro real.

Por fim, ressalta-se a relevância da simulação para preparar o Exército Brasileiro para os desafios advindos dos conflitos no século XXI, desenvolvendo a mentalidade de transformação e de constante inovação.

Referências

- 1. A. J. P. Rosa e I. Pavanati, "A Utilização da Realidade Virtual e Aumentada na Formação dos Policiais Militares em Santa Catarina", *Revista Ordem Pública e Defesa*, v.7, n. 2 (2014), p. 37-51, acesso em 08 de janeiro de 2019, https://rop.emnuvens.com.br/rop/article/viewFile/81/80.
- 2. R. J. Yardley et al., Use of Simulation for Training in the US Navy Surface Force (Santa Monica, CA: RAND Corporation, 2003).
- 3. J. Banks, "Principles of Simulation", in J. Banks (ed.), Handbook of Simulation Principles, Methodology, Advances, Applications and Practice (Atlanta, GA: Engineering & Management Press, 1998), p. 3-30.
- 4. K. Kang e R. J. Roland, "Military Simulation", in J. Banks (Editor). Handbook of Simulation Principles, Methodology, Advances, Applications and Practice (Atlanta: Engineering & Management Press, 1998), p. 645-658.
- 5. S. S. L. Peres, "Uma Visão do Futuro da Simulação no Treinamento Militar Brasileiro: 'Simulação como Serviço'", *Revista Doutrina Militar Terrestre*, v. 005, n. 011 (maio-ago. 2017), p. 14-19.
- 6. F. Bellemain; P.M.B Bellemain; e V. Gitirana, "Simulação no ensino da matemática: um exemplo com cabri-géomètre para abordar os conceitos de área e perímetro", III Seminário Internacional de Pesquisa em Educação Matemática (Águas de Lindóia, SP: III SIPEM, 2006).
- 7. Minidicionário Aurélio da Língua Portuguesa, 2007, "simulação".
- 8. Estado-Maior do Exército, Portaria nº 55, de 27 de março de 2014. Aprova a Diretriz para o Funcionamento do Sistema de Simulação do Exército SSEB (EB20-D-10.016) (Brasília, DF, 2014a).
 - 9. P. A. Filho e S. Scarpelini, "Simulação: definição", Medicina,

- v. 40, n. 2, p. 162-166, 2007, acesso em 08 abr. 2019, https://doi.org/10.11606/issn.2176-7262.v40i2p162-166.
 - 10. Estado-Maior do Exército, Portaria nº 55, p. 2.
 - 11. Banks, "Principles of Simulation", p.11.
 - 12. Ibid.
- 13. W. Santos, "Uso de simuladores como ferramenta no ensino-aprendizagem de redes de computadores" (dissertação de mestrado, Universidade Fundação Mineira de Educação e Cultura, 2015), acesso em 30 jul. 18, http://fumec.br/revistas/sigc/article/view/4611.
- 14. J. V. Medeiros Junior, M. E. M. Anez, A. C. Fernandes e F. A. Aleixo, "Software de Simulação Empresarial: Ferramenta de Apoio ao Ensino da Administração", XXIV Simpósio de Gestão da Inovação Tecnológica (Gramado, RS, 2006), acesso em 30 jul. 18, http://www.anpad.org.br/admin/pdf/DCT920.pdf.
- 15. Ministério da Educação, Secretaria de Educação Média e Tecnológica. Linguagens, códigos e suas tecnologias: orientações educacionais complementares aos parâmetros curriculares nacionais PCNS+ (Brasília, DF, 2002).
- 16. Bellemain; Bellemain; Gitirana, "Simulação no ensino da matemática", p. 4.
- 17. J. F. Teixeira, "Uma proposta de software educacional simulador para ensino de sistemas operacionais" (dissertação de mestrado, Universidade Federal de Santa Catarina, 2001), acesso em 30 jul. 18., https://repositorio.ufsc.br/xmlui/hand-le/123456789/79766.
- 18. R. A Ferreira, "Simulação como parte do treino operacional", 1999, acesso em 13 mar. 2019, https://comum.rcaap.pt/ bitstream/10400.26/12298/1/MAJ%20Silva%20Ferreira.pdf.

- 19. lbid, p. 6-7.
- 20. A. F. Souza, "A Arquitetura da Simulação no CIBLD", Ação de Choque, n.13, dez. 2015, p. 07-23.
 - 21. Estado-Maior do Exército, Portaria nº 55, 2014, p.3.
- 22. R. S. Mendes, "Videogame ou Simulador", *Dédalo:* Revista de Segurança de Voo da Aviação do Exército, n. 20, out. 2017, p. 6-7.
- 23. A. L. N. Cunha, "O Emprego do Sistema de Simulação Construtivo como Ferramenta de Apoio à Decisão: uma proposta ao Exército Brasileiro" (tese de doutorado, Escola de Comando e Estado-Maior do Exército, 2011).
- 24. Gwenda Fong, "Adapting COTS Games for Military Experimentation", *Simulation & Gaming*, v. 37, n. 4 (2006), p. 452-465.
 - 25. Sobre COTER, acessar www.coter.eb.mil.br.
- 26. G. C. N. Fernandes Barbosa. "O Emprego da Simulação Virtual para o Adestramento da Bateria Antiaérea Gepard: uma avaliação sobre a adequabilidade da utilização da simulação virtual tipo game semi-imersivo multijogador", *Revista Giro no Horizonte* (2018), p. 143-159, acesso em 20 fev. 2019, http://girodohorizonte.esao.eb.mil.br/revistas/2018-1/12%20Caio.pdf.
 - 27. Estado-Maior do Exército, Portaria nº 55, 2014, p. 1.
- 28. A. F. Souza, "O emprego da simulação virtual no treinamento militar: A experiência do centro de instrução de blindados", *Ação de Choque*, n. 13 (dez. 2015), p. 40-49.
 - 29. Mendes, "Videogame ou Simulador", p. 6-7.
- 30. E. D. C. Villas Bôas, O Papel da Ciência e Tecnologia no Processo de Transformação do Exército Brasileiro (São Paulo: Instituto de Estudos Avançados da USP, 2016), acesso em 28 maio 2018, http://www.iea.usp.br/publicacoes/textos/o-papel-da-ciencia-e-tecnologia-no-processo-de-transformacao-do-exercito-brasileiro/view.

- 31. "EXÉRCITO apresenta simulador de tiro com tecnologia inteiramente nacional", Noticiário do Exército, 2018, acesso em 28 maio 2018, http://www.eb.mil.br/web/noticias/noticiario-do-exercito/-/asset_publisher/MjaG93KcunQl/content/simulador-de-armas-leves/8357041.
- 32. Empresa Estratégica de Defesa (EED), conforme Lei nº 12.598, de 21 de março de 2012, é toda pessoa jurídica credenciada pelo Ministério da Defesa mediante o atendimento cumulativo das condições estabelecidas nesta lei.
- 33. ASTROS (Artillery Saturation Rocket System ou Sistema de Foguetes de Artilharia para Saturação de Área) é um sistema de lançadores múltiplos de foguetes fabricado pela empresa brasileira Avibras.
- 34. Tríplice Hélice: conceito que relaciona universidade-indústria-governo em busca de inovação.
- 35. M. S. Rodrigues et al., "1º Exercício de Simulação Virtual do Simulador de Apoio de Fogo Sul", *Revista Doutrina Militar Terrestre*, v. 005, n. 010 (Abr. 2017), p. 6-13.
- 36. R. Gomide, "Simulador 'Safo' permite tiro virtual e economia real da Artilharia do Exército", Defesanet, Brasília, DF, 2012, acesso em 26 abr. 2019, http://www.defesanet.com.br/terrestre/noticia/9020/Simulador-%E2%80%98Safo%E2%80%-99-permite-tiro-virtual-e-economia-real-da-Artilharia-do-Exercito/.
- 37. O SIMULADOR de Apoio de Fogo em Números: "Tudo é simulação, menos a guerra", Hefestus, dez. 2017.
- 38. A. D. R. C. Pereira, "Sistemática do Planejamento Estratégico Militar Baseado em Capacidades: uma necessidade para o Ministério da Defesa" (trabalho de conclusão de curso, Curso de Altos Estudos de Política e Estratégia, Escola Superior de Guerra, 2016).
- 39. "A SIMULAÇÃO como ferramenta no adestramento da tropa", Revista Verde Oliva, ano XLI, n. 222 (dez. 2013), p. 9-11.